Skeletons for transitive fibered maps

Katrin Gelfert (UFRJ, Brazil)

joint work with L. J. Díaz and M. Rams

Skeletons for transitive fibered maps

Axioms: Some notation

Consider a one step skew-product $F \colon \Sigma_k \times \mathbb{S}^1 \to \Sigma_k \times \mathbb{S}^1$

$$F(\xi, x) = (\sigma(\xi), f_{\xi_0}(x)).$$

Consider the associated IFS $\{f_i\}_{i=0}^{k-1}$.

Some notation: Given *finite* sequences $(\xi_0 \dots \xi_n)$ and $(\xi_{-m} \dots \xi_{-1})$, let

$$f_{[\xi_0\dots\xi_n]} \stackrel{\text{def}}{=} f_{\xi_n} \circ \dots \circ f_{\xi_1} \circ f_{\xi_0}$$
$$f_{[\xi_{-m}\dots\xi_{-1}\cdot]} \stackrel{\text{def}}{=} (f_{\xi_{-1}} \circ \dots \circ f_{\xi_{-m}})^{-1} = (f_{[\xi_{-m}\dots\xi_{-1}]})^{-1}$$

Given $A \subset \mathbb{S}^1$, define its *forward* and *backward orbit*, respectively, by

$$\mathcal{O}^{+}(A) \stackrel{\text{def}}{=} \bigcup_{n \ge 0} \bigcup_{(\beta_{0} \dots \beta_{n-1})} f_{[\beta_{0} \dots \beta_{n-1}]}(A)$$
$$\mathcal{O}^{-}(A) \stackrel{\text{def}}{=} \bigcup_{m \ge 1} \bigcup_{(\theta_{-m} \dots \theta_{-1})} f_{[\theta_{-m} \dots \theta_{-1}.]}(A)$$

T CEC+(J)

CEC-(J)Acc+(J)Acc-(J)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

T (Transitivity). CEC+(J)

CEC-(J)Acc+(J)Acc-(J)

T (Transitivity).

CEC+(*J*) (Controlled Expanding forward Covering).

CEC-(J)Acc+(J) Acc-(J)

T (Transitivity).

CEC+(*J*) (Controlled Expanding forward Covering).

CEC-(J) (CE backward Covering). Acc+(J)Acc-(J)

T (Transitivity).

CEC+(*J*) (Controlled Expanding forward Covering).

CEC-(J) (CE backward Covering). Acc+(J) (Forward Accessibility). Acc-(J)

T (Transitivity).

CEC+(*J*) (Controlled Expanding forward Covering).

CEC-(J) (CE backward Covering). Acc+(J) (Forward Accessibility). Acc-(J) (Backward Accessibility).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

T (Transitivity). $\exists x \in \mathbb{S}^1$: $\mathcal{O}^+(x)$ and $\mathcal{O}^-(x)$ are both dense in \mathbb{S}^1 . CEC+(J) (Controlled Expanding forward Covering).

CEC-(J) (CE backward Covering). Acc+(J) (Forward Accessibility). Acc-(J) (Backward Accessibility).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = うへで

T (Transitivity). $\exists x \in \mathbb{S}^1$: $\mathcal{O}^+(x)$ and $\mathcal{O}^-(x)$ are both dense in \mathbb{S}^1 . CEC+(J) (Controlled Expanding forward Covering).

CEC-(J) (CE backward Covering). Acc+(J) (Forward Accessibility). $\mathcal{O}^+(\text{int } J) = \mathbb{S}^1$. Acc-(J) (Backward Accessibility).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

T (Transitivity). $\exists x \in \mathbb{S}^1$: $\mathcal{O}^+(x)$ and $\mathcal{O}^-(x)$ are both dense in \mathbb{S}^1 . CEC+(J) (Controlled Expanding forward Covering).

CEC-(J) (CE backward Covering). Acc+(J) (Forward Accessibility). $\mathcal{O}^+(\text{int } J) = \mathbb{S}^1$. Acc-(J) (Backward Accessibility). $\mathcal{O}^-(\text{int } J) = \mathbb{S}^1$.

T (Transitivity). $\exists x \in \mathbb{S}^1$: $\mathcal{O}^+(x)$ and $\mathcal{O}^-(x)$ are both dense in \mathbb{S}^1 . CEC+(J) (Controlled Expanding forward Covering). $\exists K_1, \ldots, K_5$: for every interval $H \subset \mathbb{S}^1$ intersecting J with $|H| < K_1$ • $\exists (n_0 \ldots n_{\ell-1}), \ell < K_2 |\log |H|| + K_3$, such that

$$f_{[\eta_0...\eta_{\ell-1}]}(H) \supset B(J,K_4),$$

• $\forall x \in H$

$$\log \left|(f_{[\eta_0\dots\eta_{\ell-1}]})'(x)\right| \geq \ell \mathcal{K}_5, \quad \mathcal{K}_5 > 1.$$

CEC-(J) (CE backward Covering).

Acc+(J) (Forward Accessibility). $\mathcal{O}^+(\text{int } J) = \mathbb{S}^1$. Acc-(J) (Backward Accessibility). $\mathcal{O}^-(\text{int } J) = \mathbb{S}^1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = うのの

T (Transitivity). $\exists x \in \mathbb{S}^1$: $\mathcal{O}^+(x)$ and $\mathcal{O}^-(x)$ are both dense in \mathbb{S}^1 . CEC+(J) (Controlled Expanding forward Covering). $\exists K_1, \ldots, K_5$: for every interval $H \subset \mathbb{S}^1$ intersecting J with $|H| < K_1$ • $\exists (n_0 \ldots n_{\ell-1}), \ell < K_2 |\log |H|| + K_3$, such that

$$f_{[\eta_0...\eta_{\ell-1}]}(H) \supset B(J,K_4),$$

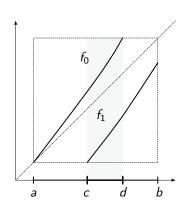
• $\forall x \in H$

$$\log \left| (f_{[\eta_0 \ldots \eta_{\ell-1}]})'(x) \right| \geq \ell K_5, \quad K_5 > 1.$$

CEC-(J) (CE backward Covering). IFS $\{f_i^{-1}\}_i$ satisfies CEC+(J). Acc+(J) (Forward Accessibility). $\mathcal{O}^+(\text{int } J) = \mathbb{S}^1$. Acc-(J) (Backward Accessibility). $\mathcal{O}^-(\text{int } J) = \mathbb{S}^1$.

Examples. System that satisfies Axioms T, CEC \pm , Acc \pm One-dimensional blenders

Motivated by: [Bonatti, Díaz '96], [Bonatti, Díaz, Ures '02]

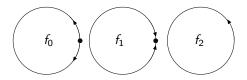


IFS $\{f_i\}_{i=0}^{k-1}$, $k \ge 2$, has expanding blender if: there are $[c, d] \subset [a, b] \subset \mathbb{S}^1$ so that • (expansion) $f'_0(x) \ge \beta > 1 \ \forall x \in [a, b]$ • (boundary condition) $f_0(a) = f_1(c) = a$ • (covering and invariance) $f_0([a, d]) = [a, b]$ and $f_1([c, b]) \subset [a, b]$ It has a *contracting blender* if $\{f_i^{-1}\}_i$ does. Suppose that $\forall x \in \mathbb{S}^1$ by some forward iteration maps inside an expanding blender (a, b) and by some backward iteration meets a contracting blender.

ヘロト 不得下 不足下 不足下

Examples. System that satisfies Axioms T, CEC \pm , Acc \pm Contraction-expansion-rotation examples

Motivated by: [Gorodetskii, Il'yashenko, Kleptsyn, Nal'skii '05]



Consider IFS $\{f_i\}_{i=0}^{k-1}$, $k \ge 3$, so that

- f_0 has a repelling fixed point,
- f_1 has an attracting fixed point,

- 4 周 ト - 4 日 ト - 4 日 ト

• f_2 is an irrational rotation.

Main results

Theorem (Approximating non-hyperbolic measure by hyperbolic ones) Let $\mu \in \mathcal{M}_{erg}$ with $\chi(\mu) = 0$ and $h = h(\mu) > 0$. Then $\forall \gamma, \delta, \lambda > 0$ there exists compact F-invariant transitive hyperbolic Γ^+

$$h_{ ext{top}}(\Gamma^+) \geq h(\mu) - \gamma$$

and for every $\nu \in \mathcal{M}_{\mathrm{erg}}(\Gamma^+)$

$$d_{w*}(\nu,\mu) < \delta$$
 and $\chi(\nu) \in (0,\lambda).$

Analogously with hyperbolic Γ^- with $\chi(\nu) \in (-\lambda, 0)$ for $\nu \in \mathcal{M}_{erg}(\Gamma^-)$.

・得下 ・ヨト ・ヨト ・ヨ

Main results

Theorem (Approximating non-hyperbolic measure by hyperbolic ones) Let $\mu \in \mathcal{M}_{erg}$ with $\chi(\mu) = 0$ and $h = h(\mu) > 0$. Then $\forall \gamma, \delta, \lambda > 0$ there exists compact *F*-invariant transitive hyperbolic Γ^+

$$h_{ ext{top}}(\Gamma^+) \geq h(\mu) - \gamma$$

and for every $\nu \in \mathcal{M}_{\mathrm{erg}}(\Gamma^+)$

$$d_{w*}(\nu,\mu) < \delta$$
 and $\chi(\nu) \in (0,\lambda).$

Analogously with hyperbolic Γ^- with $\chi(\nu) \in (-\lambda, 0)$ for $\nu \in \mathcal{M}_{erg}(\Gamma^-)$.

Theorem (Restricted variational principle for entropy)

$$h_{ ext{top}}(F) = \sup_{\mu \in \mathcal{M}_{ ext{erg}, < 0}} h(\mu) = \sup_{\mu \in \mathcal{M}_{ ext{erg}, > 0}} h(\mu) \geq \sup_{\mu \in \mathcal{M}_{ ext{erg}, = 0}} h(\mu).$$

Main results

Theorem ("Perturbing" hyperbolic measure "toward the other side") Let $\mu \in \mathcal{M}_{erg}$ with $\alpha = \chi(\mu) < 0$ and $h = h(\mu) > 0$. Then $\forall \gamma, \delta > 0$, $\forall \beta > 0$ exists compact F-invariant transitive hyperbolic Γ

$$h_{ ext{top}}({\sf \Gamma}) \geq rac{h}{1+{\sf K}_2(eta+|lpha|)}-\gamma$$

and for every $\nu \in \mathcal{M}_{\mathrm{erg}}(\Gamma)$

$$egin{aligned} &rac{eta}{1+\mathcal{K}_2(eta+|lpha|)}-\delta < \chi(
u) < rac{eta}{1+rac{1}{\log \|F\|(eta+|lpha|)}}+\delta, \ &d_{\mathsf{w}*}(
u,\mu) < 1-rac{1}{1+\mathcal{K}_2(eta+|lpha|)}+\delta. \end{aligned}$$

Here

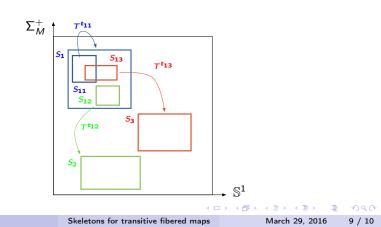
 $K_2 \stackrel{\text{\tiny def}}{=} \inf \left\{ K_2(J) \colon J \text{ is blending interval} \right\}, \quad \|F\| \stackrel{\text{\tiny def}}{=} \max_{i,x} \left\{ |f_i'(x)|, |(f_i^{-1})'(x)| \right\}.$

Ingredients: Skeletons

F has the skeleton property relative to $J \subset \mathbb{S}^1$, $h \ge 0$, $\alpha \ge 0$ if:

There exist connecting times $m_{\rm b}, m_{\rm f} \in \mathbb{N}$: $\forall \varepsilon_H \in (0, h) \ \forall \varepsilon_E > 0 \ \exists n_0 \ge 1$ so that $\forall m \ge n_0$ there exists a finite set $\mathfrak{X} = \mathfrak{X}(h, \alpha, \varepsilon_H, \varepsilon_F, m) = \{X_i\}$ of points $X_i = (\xi^i, x_i)$: (i) card $\mathfrak{X} \simeq e^{m(h \pm \varepsilon_H)}$. (ii) the sequences $(\xi_0^i \dots \xi_{m-1}^i)$ are all different, (iii) $\frac{1}{n} \log |(f_{[\xi_0^i \dots \xi_{n-1}^i]})'(x_i)| \simeq \alpha \pm \varepsilon_E \quad \forall n = 0, \dots, m.$ \exists sequences $(\theta_1^i \dots \theta_{r_i}^i)$, $r_i \leq m_f$, $(\beta_1^i \dots \beta_{s_i}^i)$, $s_i \leq m_b$, points $x'_i \in J$: (iv) $f_{[\theta_1^i \dots \theta_{r_i}^i]}(x_i^\prime) = x_i$, (v) $f_{[\xi_0^i \dots \xi_{m-1}^i \beta_1^i \dots \beta_{s_i}^i]}(x_i) \in J.$

Ingredients: Multi-variable-time horseshoes Let $T: X \to X$ be a local homeomorphism of a compact metric space. $\{S_i\}_{i=1}^M$ disjoint compact, $t_{ij} \in \{t_{\min}, \ldots, t_{\max}\}$ transition times: $T^{t_{ij}}(S_i) \supset S_j, \quad T^{t_{ij}}|_{S_i \cap T^{-t_{ij}}(S_i)}$ injective.



Ingredients: Multi-variable-time horseshoes Let $T: X \to X$ be a local homeomorphism of a compact metric space. $\{S_i\}_{i=1}^{M}$ disjoint compact, $t_{ij} \in \{t_{\min}, \dots, t_{\max}\}$ transition times: $T^{t_{ij}}(S_i) \supset S_j, \quad T^{t_{ij}}|_{S_i \cap T^{-t_{ij}}(S_j)}$ injective.

Let t = t(i) for which $\#\{j: t_{ij} = t\}$ is maximal and let $A = (a_{ij})_{i,j=1}^{M}$ $a_{ij} \stackrel{\text{def}}{=} 1$ if $t_{ij} = t(i)$ and $a_{ij} \stackrel{\text{def}}{=} 0$ otherwise.

⇒ S_{ij} and $S_{i\ell}$ are disjoint if ij and $i\ell$ are A-admissible and $j \neq \ell$. We call $T : \Gamma \rightarrow \Gamma$ a multi-variable-time horseshoe, where

$$\Gamma \stackrel{\text{\tiny def}}{=} \bigcup_{k=0}^{t_{\max}-1} T^k(\Gamma'), \quad \Gamma' \stackrel{\text{\tiny def}}{=} \bigcap_{n \ge 1} \bigcup_{[c_0 \dots c_{n-1}] A - \text{admissible}} S_{c_0 \dots c_{n-1}}.$$

Then

$$h_{ ext{top}}(T,\Gamma) \geq rac{\log M - \log(t_{ ext{max}} - t_{ ext{min}} + 1)}{t_{ ext{max}}}.$$